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Abstract 

A refinement of earlier models used to compute 
intensity distributions for the diffuse to phase is 
described. The model includes both faulted to regions 
and untransformed b.c.c, regions. The diffuse intensity 
generated by this model is compared with experiment. 
A result of this calculation is that, unlike its pre- 
decessors, it causes the observed diffuse maxima under 
the sharp fundamental Bragg reflections. The model is 
shown to be compatible with measurements of the 
integrated intensities of the fundamental reflections. A 
correction to our single-variant intensity calculation to 
account for interference effects among the variants is 
displayed. Our result is compared with those of other 
structural models for the diffuse to phase, and the 
implications of its details are discussed. 

Introduction 

The partial decomposition of certain alloys (Ti or Zr 
with V or Nb, for example) from b.c.c, at high 
temperatures to the 09 phase upon quenching has been 
the object of considerable recent interest. In addition to 
the thermodynamics of the transformation, certain of 
its structural aspects as manifested in its diffraction 
pattern have attracted attention. Ideally the structure 
change is simple and well understood: If before 
transformation the structure is described by a rhombo- 
hedrally centered hexagonal cell with atomic positions 
0 , 0 , 0 ;  2 1 1 .  1 2 2 and c/a = (])u2, after transformation 3,~',~, ~J,~,~ 
the cell dimensions are sensibly unchanged, but the 
atomic positions become 0,0,0; ~, J, J + u; J, ~, ~ -  u; 
where 0 < u < ~. In the diffraction pattern the result of 
the transformation is the relaxation of the requirement 
that - h  + k + l be a multiple of three in order that Fht, t 
be nonzero, and additional Bragg maxima (here called 
superstructure reflections) appear. Since the c axis of 
the hexagonal cell is half the body diagonal of the cubic 
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cell, there are four equally likely orientations (or 
variants) of the transformed 09 regions relative to the 
b.c.c, parent material. 

However, under certain conditions all of the super- 
structure reflections are diffuse and are shifted from the 
nodes of the reciprocal lattice in a direction parallel to 
the c axis, some toward and others away from the 
origin. The shifts and degree of broadening become 
more exaggerated as the alloy concentration increases. 
The original b.c.c, maxima (here called fundamental 
reflections) remain sharp and unshifted, though beneath 
them are diffuse maxima apparently unrelated to 
temperature diffuse scattering. The diffuse X-ray 
scattering measurements of Lin, Spalt & Batterman 
(1976) shown in Fig. 1 for a Zr-20 wt% Nb alloy 
illustrate these effects. They are very similar to the 
analogous diffuse neutron measurements of Moss, 
Keating & Axe (1974). 

In an attempt to understand the intensity distri- 
bution in terms of the structure of the partially 
decomposed alloy, Boric, Sass & Andreassen (1973a,b, 
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Fig. 1. Contour map of the diffuse X-ray intensity distribution for a 
Zr-20 wt% Nb alloy quenched from 1270 K. The intensity has 
been divided by the average atomic scattering factor squared. 
The continuous variables Hx, H2, and H 3 become the b.c.c. Miller 
indices at the fundamental Bragg maxima. The map is for the 
plane H~ = H2. Closely spaced contours near the fundamental 
maxima have been omitted. 
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referred to here as parts I and II) developed new 
methods for evaluating the kinetic intensity sum for 
crystals which contain defective structural elements 
which are only a fraction of a unit cell. They found that 
by the occasional insertion of such a defective unit 
containing two atoms and with a volume of ~ that of the 
hexagonal to cell in otherwise periodic regions of 
decomposed material, the experimentally observed 
broadening and shifts of the superstructure reflections 
could be successfully reproduced. 

Other attempts to account for the observed intensity 
distribution from structural models include that of 
Kuan & Sass (1976), in which they propose a 
complicated system of atomic displacements about a 
vacancy, and the soliton model of Horovitz, Murray & 
Krumhansl (1978). 

We are here concerned with extensions of the 
methods of parts I and II. The calculation described in 
part II, which generated the observed broadening, 
shifts, and relative intensities of the superstructure 
reflections, was relevant to a completely transformed 
crystal of only one variant. We generalize the theory to 
compute the diffuse scattering from a crystal which 
includes regions of untransformed b.c.c, material which 
scatters coherently with the to regions. An unexpected 
result of this calculation is the generation of the 
experimentally observed diffuse maxima beneath the 
fundamental reflections. In earlier formulations of the 
theory, the atomic shift parameter u associated with the 
transformation was taken to be a rational fraction. It is 
here left arbitrary so that it may be continuously varied 
to fit the experimental result. 

Our model (like all others) presumes the crystal to be 
composed of untransformed material and at most one 
variant and its associated subvariants (generated by the 
diatomic defective units of part II). Using a recently 
described theory (Boric, 1982a) we account for 
interference effects among the variants of the system. 
The result is a modification of the diffuse maxima under 
the fundamental Bragg reflections. 

Diffraction theory for partially transformed alloys 

We begin with a partially transformed crystal con- 
taining both untransformed b.c.c, regions (the fl phase) 
and to regions, all taken to be of the same variant. The 
hexagonal-unit-cell basis vectors for the appropriate to 
variant are ala2a3; the diffraction vector is k = 
2n(h~ b 1 + h2b2 + ha ba), the b~'s being reciprocal to 
the an'S and the continuous variables h~ taking on the 
values of the to Miller indices when they are integers. 
Then before transformation the kinematic intensity sum 
in electron units is 

I~(k) = ~ Y Y Nnexp[2ni(n~h~ + n2h2 + n3h3/3)] 
n I 112 n 3 

× (exp[ik. 8n3]). 

We have here taken the atomic scattering factor to be 
unity. N n is the total number of atom pairs which may 
be formed in the crystal such that their separation is 
nl al + n2 a2 + n3 a3/3 + 8n 3. With the b.c.c, structure 
viewed as a system of hexagonal planes in the usual 
A B C  stacking sequence, the relative lateral shifts of the 
atomic pairs lin3 depending on whether they populate A, 
B, or C planes are as discussed in part I. The average 
(exp[ik. 8n~] ) is as given by equations (4), (5), and (6), 
part I, depending on whether n 3 = 3q, 3q + 1, or 
3 q + 2 .  

After the transformation some of the atoms in the to 
regions of the partially transformed crystal have 
experienced displacements of +ua 3, as discussed in the 
introduction. If x, and x 0 are as defined in part I, that 
is, x is zero if the nth (or zeroth) atom is undisplaced, 
plus one if the displacement is +ua 3, and minus one for 
-ua3,  an additional factor exp[2zciu(x,, - x o) ha] must 
be included in the kinematic sum for each atomic pair. 
Since this factor may be different for the many pairs 
represented by a common nl n2n3, it must be inserted 
into that equation as an average. Hence after trans- 
formation the intensity is given by 

I ( k ) =  Z Y Z N n e x p t 2 n i ( n l h l  + n2h2 + n3h3/3)1 
n I n2 n3 

x (exp[ik.lin3]) (exp[2~u(xn--  x0)h3]). (1) 

As before, the evaluation of the summations of (1) must 
depend on (exp[2n iu(x  n - x0)h3]), which contains all 
of the information concerning the details of the 
transformation and any model used to represent it. 

We take our crystal to be a composite of the models 
of parts I and II: it is to be a mosaic of three different 
but commensurate kinds of 'bricks'. There are mon- 
atomic fl units of height a3/3 (as in part I); triatomic to 
cells of height a3 (as in parts I and II); and diatomic 
defective units of height 2a3/3 (as in part II). The 
'bricks' have common dimensions in the hexagonal 
plane whose normal is a 3. We require that the defective 
units be contained in to regions; that is, each must be 
preceded and followed by an to cell. In effect such a 
defective unit allows a transition between subvariants. 
Fig. 2, part II, illustrates an to region containing such 
units, bounding regions related to the three sub- 
variants. However, unlike the model of part II, we allow 
the possibility that such regions may be imbedded in an 
untransformed fl matrix. 

With N the total number of atoms in the crystal, let 
N1, Nz, and N 3 be the number of fl units, the number of 
to cells, and the number of defective units. If x, y, and z 
are the corresponding volume fractions, x = N1/N,  y = 
3N2/N,  and z = 2N3/N.  Let ), be the probability that an 
to cell is followed by a defective unit, so that the total 
number of such cells is Nz 7. Since each defective unit 
must be preceded by an to cell, we must have N3 = NE )' 
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or z = 2N2? /N  = 2yy/3. Hence, since x + y + z = 
x + y(1 + 2y/3) = 1, 

y = 3 ( 1 - x ) / ( 3 + 2 y )  and z = 2 y ( 1 - x ) / ( 3 + 2 y ) .  

(2) 
We wish to compute the factor (exp[2zriu(x,, - 

K0)h3] ) appearing in (1) for a specific n = n ln2n  3. To 
do that we must first find the probability that an origin 
atom is displaced, which will be determined by its 
environment. Fig. 2 illustrates the eight kinds of 
environments of the origin that obtain given our model. 
We show a~ cells both preceding and following the 
defective units of regions 3, 4, 6, and 7 since our model 
requires that these units be contained within 09 regions. 
This figure is analogous to Fig. 2, part I, and Fig. 3, 
part II. Regions 1, 2, 3, and 4 cause the origin atom to 
be undisplaced; regions 5 and 7 displace it downward; 
and regions 6 and 8 upward. The probability that the 
origin is to be found in region 1 is x, the volume 
fraction of untransformed material. From (2), the 
probability that it is in region 2 (or 5 or 8) is 
(1 - x)/(3 + 2y); and for region 3 (or 4 or 6 or 7) it is 
½Y(1 --  x ) / ( 3  + 2y).  

After having specified the state of the origin, we treat 
the statistical consequences of the translation n in two 
parts: First, we ask, given an origin, what are the 
probabilities that a translation of n I a~ + n2a 2 in the 
hexagonal plane will cause us to arrive in each of the 
eight possible regions of Fig. 2. The result is obtained 
by the procedure described in Appendix A, part I. We 
imagine the hexagonal plane to be divided into a large 
number of small regions, T of which are distinctly 
different. We let Pp be the probability that after having 
crossed p boundaries between the regions, we occupy a 
region identical to that from which we started. P~ is the 
probability that we have arrived in a different region. It 
is shown in Appendix A, part I, that 

~ ÷ ~ 
P" T T T - - 1  

and (3) 

1 1 t 1 ;  
P ~ - r  r 7" -1  

Region Number 
! 2 3 4 5 6 7 8 

I 

_ ~  Plane of the 

Fig. 2. Schematic illustration of the eight kinds of possible 
environments of the origin as specified by our model. 

We may now, if we like, claim that actually U of the T 
'different' regions are alike and correspond to region 1, 
Fig. 2. We must then choose U such that x = U/T. We 
then have, after beginning with an undisplaced atom in 
an untransformed region, the probability that after a 
translation in the hexagonal plane which crosses p 
boundaries (some of which may now be fictitious) 
finding an identical atom is Pp + ( U -  1)P~. Similarly, 
we may choose S of them to correspond to region 2 (or 
5 or 8), Fig. 2, in which case, from (2), S / T  = 
(1 - x)/(3 + 2y). Then the probability that the 
translation terminates on an undisplaced atom pre- 
ceded by an o9 cell is SP;~. 

For the component n 3 of n, we introduce six 
conditional probabilities: 0a,3 is the probability that 
after beginning with an undisplaced atom preceded by 
an 09 cell, we find, after a translation of n 3 a3/3, an 
undisplaced atom. Corresponding probabilities for 
displacements up and down are +o,,~ and _0,3. The 
probabilities 0a'3, +o'3, and _o" 3 are similar quantities, 
given that the undisplaced origin is preceded by a fl 
unit. Note that if it is preceded by a defective unit, since 
such units must always be followed by an to cell, the 
relevant probabilities are the an3 _ 3's. 

In addition to the obvious requirement that 0an3 + 
+an3 + _a,, = 1 for both primed and unprimed 
probabilities, an important relation exists among the 
a's. We must have 

(1 - - x )  {oO.n~ + oOn~-a + Oan~-2 + Yoa"~-3 x ° ° ~  + (3 + 2y) 

-[- ~ 0 0 " n 3 _ 4  } = 0 a o o ,  (4) 
where 0ooo is the limiting value approached by the 
probability as na becomes large. Equation (4) must hold 
since Xoan3 is the probability that the origin is in region 
1, Fig. 2, and n 3 is undisplaced; and subsequent terms 
account for the origin in the remaining regions with site 
n 3 undisplaced. Clearly their sum must be the prob- 
ability that n 3 is undisplaced regardless of the con- 
dition of the origin. Equation (4) must hold for any na 
greater than four. Since all of the atoms in un- 
transformed regions, half of them in defective units, and 
one-third of them in o9 cells are undisplaced, from (2), 

y(1 - - x )  1 - - x  
00"oo ~--~ X + + 

(3+2~)  (3+2~)  

(1 + ~,)(1 + x) + x 
= ( 5 )  

(3 + 2~) 

Obviously relations similar to (4) for the +an's and 
_an 's  must hold, with 

(2 + y)(1 - x) 
+ooo =-o'oo = _+o'oo = (6) 

2(3 + 2~) 

We may now write the contribution to (exp[2zriu(x,, 
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- x0)h3] ) for those atomic pairs which are such that 
the origin is in a fl region (or region 1 in the sense of 
Fig. 2). The probability that it is found in that region is 
x, and in that case x 0 = 0. Hence 

(exp[2n/u(x,  -- x o) hal)l 

= x { [ P  v + ( U -  1)P~][0o'3 + +o'3exp(2niuh3) 

+ _o" exp(-2niuh3)] + se~,[oon3 

+ +on3 exp (2n/uh 3) + -on3 exp (-2niuh3)] 

+ SP~[oon3-1 + +on3-1 exp(2niuh3) 

+ -on3-1 exp (-2muh3)]  + SP~[oon3 -2 

+ +on3-2 exp(2muh3) + -on3-2 exp(-2muh3)]  

+ ½(T-- U- -  3S)P~,[oon,_3 

+ +on3-3 exp(2zr/uh3) + -on3-3 exp(-2n/uh3)] 

+ ½(T-- U- -  3S)e;[00"n3_4 

+ +on3-4 exp(2n/uh3) + -on3-4 exp(-2n/uh3)] }. 

With U = x T  and S = T(1 -- x)/(3 + 27), (4), and 
Pv and P~ as given by (3), this expression reduces to a 

simple form: 

(exp[2n/u(x n -- Xo) h3])1 

= XloOoo + 2_+000 cos 2huh 3 

/ 

( 1 y '  
+ -  [(0o~3- 0ooo) 

T - 1  

+ (+o" 3 -- ±aoo) exp(2n/uh3) 

+ (-on'3- +-ooo)exp(-2n'/uh3)] } . 

Introduce the notation 

~ - =  0ooo + 2+_ooo cos 2huh 3 

and 

(7) 

(8) 

gn3 = (+On3- +-¢roo)exp[n/uh 31 

- (-On3 - +-ooo) exp[-n/uh3] (9) 

with an analogous definition of gn3 in terms of the 
' = 1 -  ' - a '  eliminated, primed a's. Then with 00.3 +on3 - n3 

(7) reduces to 

(exp[2mu(xn -- r'o) h3]) 1 

= x ~ -  + 2i sin 7tuh 3 T--  1 g"  . (10) 

Corresponding expressions for the remaining seven 
regions of Fig. 2 are 

(exp[2zr/u(t¢ n -- l%) h3])2 

{ ( ( l - - x )  J + 2 i s i n n u h  3 - 
(3 + 27) T -  1 

g,,~} ; (11) 

(exp[2niu(x n -- Ko) h3])3+4 

/ C 1; 3/ 7(1 -- x) J -  + 2i sin 7tuh 3 " gn3- ; 
(3 + 27) T -  1 

(12) 

(exp[2mu(xn -- a:o) h3])s 

(1 - - x )  

(3 + 27) 
exp[2n/uh 3] 

x/ +2isin h3 ( 
(exp[2n/u(K. -- x0) ha])6 

(13) 

7(1 - x )  

2(3 + 27) 
exp[-2n/uh 3] 

{ / x J - + 2 i s i n z r u h  3 - ~ .  g.3-4 ; (14) 
T - 1  

(exp[2n/u(x n -- Xo) h3])7 

7(1 - x )  
exp[2niuh a] 

2(3 + 27) 

x J - +  2isin huh3 - g,,3- ; (15) 
T - 1  

(exp[2~qu(x,, - x0) h3])s 

(1 - -x )  
- -  exp[-2n/uh3] 

(3 + 27) 

/ ( 1 ;  } x ~N- + 2i sin huh3 g,,3-2 • 
T - 1  

Since from (9) and the +a and _a analogs of (4), 

(16) 

xg" 3 + 
( 1  - -  x )  

(3 + 27) {gn3 + gn3-1 + gn3-2 

+ 7g.3- 3 + 7g.~-4 } = O, 

combination of (10)-(16) yields 

(exp[2mu(x n -- Ko)h3] ) = ~ - 2  + i - -  

where 

(17) 

1; 
T - -  1 ' ~n3 ( 1 8 )  

~ = 4  
( l - - x )  

(3 + 27) 
sin 2 huh3 {-g,,3_ 1 exp[ muhs] 

+ g n 3 - 2  exp[-niuha] - -  i 7 g n 3 - 4  sin nuha}. (19) 
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The above expression holds only for n 3 > 4. It is easy 
to show that 

( 1 - x )  
gt 3 = 4 sin 2 nuh3{-g2 exp[ztiuhs] 

(3 + 27) 

+ gl exp[-ztiuh3] - 27_+000 sin 2 ~zuh3 

+ iV sin nuha exp[-n/uha] }; (20) 

(1 - - x )  
I/1' 2 - ' -  4 sin 2 ztuh3{--gl exp(ztiuh3) 

(3 + 27) 

-- i? exp(muh 3) sin huh 3 

- -  2_+ooo sin 2 nuh3[ 7 sin ~uh 3 + i exp(-niuha)]}; 

(21) 

(1 - x )  
~l = 4 sin 2 nuh3{-exp[-2niuh3] 

(3 + 27) 
- 2+_ooo(2 + 7) sin2 ztuh3}; (22) 

( l - x )  
~'0 = 4 sin 2 7tuh3{(2 + 7) 

(3 + 27) 

× (1 -- 2_+000 sin 2 huh3)}. (23) 

Insertion of (18) into (1) gives 

1=,,~21~ + Y Y Y Nnexp[2ni(nlhl + n2h2 
n I n2 i'l 3 

+ n3h3/3)] (exptik.Sn,])  

x Nn, Z -p'~n'+n' , ( 2 4 )  

p=0 T -  1 

where ¢~n,+n2 is the probability that  in a translation of o p  

nl al + n2 a2 in the hexagonal p lanep  boundaries in the 
sense of (3) are crossed. The term ~ -2 I#  in the above 
expression accounts for the sharp Bragg maxima; the 
remainder of (24) is diffuse scattering. It is diffuse 
since, from (9), gn3 must approach zero for large n3, 
hence from (19), ~n~ must as well. Equation (24) is the 
analog of (20), part I. With an 'infinite crystal '  
approximation appropriate for diffuse intensity (War- 
ren, 1969), we may, following parts I and II, write for 
the diffuse scattering I 0 = NGQ where 

G(hl,h2)= ~, ~, exp[2n/(nl hi + n2 h2)] 
n~ n a 

x Z S~ ' + "  (25) 
p=0 T -  1 

and 

Q(hl,h2,h3) = Y. ~'n3(exp[ik. 8 j )  exp[2nin3h3/3]. (26) 
n~ 

Evaluation of the function G parallels its treatment in 
parts I and II. All lateral correlations within the 
hexagonal plane are manifested in this function. It 

depends on a correlation parameter r /as given by (25), 
part II. If r/ --- 0, G is a structureless constant 
independent of hi and h2 and there are no lateral 
correlations. 

Our treatment of the diffraction theory has, up to 
this point, been fairly general. We have assumed that 
correlations within the hexagonal plane are independent 
of those parallel to a 3, the treatment described in parts I 
and II leading to the evaluation of (25) for G(hl,h2) 
includes the assumption that there are only nearest- 
neighbor correlations within the hexagonal plane. It is 
likely that this assumption is not important since, as we 
shall see, comparison of our calculation with experi- 
ment indicates that these correlations are very weak. 
We have assumed that the defective units, which allow 
transitions among the subvariants, are contained 
completely within 09 regions and are randomly distri- 
buted within those regions. Within these assumptions, 
the conditional probabilities on3 [which determine gn3 
via (9) and hence %~3 via (19) and hence Q(hl,h2,ha) 
via (26)] remain generalities. 

To find Q (which has to do with vertical correlations 
parallel to a3, and which will mainly determine the 
diffuse intensity distribution) further assumptions with 
regard to how our three 'bricks' which constitute the 
mosaic of our crystal are arrayed in vertical columns 
parallel to a 3 are necessary. These assumptions will of 
course determine the On. 

We assume that there are only nearest-neighbor 
correlations. We introduce two new probabilities tO and 
p, as illustrated in Fig. 3. The probability that a 
monatomic fl element is followed by a second such 
element is 1 -- ~0. Hence the probability that it be 
followed by an to cell, the only other possibility, is q). 
These two configurations are illustrated by the first two 
elements of the figure. Hence, regardless of prefix, we 
must have 

o" = (1 -- ~0)o" _ I + ~OOn3_ 3. (27) 

An to cell may be followed by a fl element (probability 
p), a diatomie defective unit (probability y) (recall that 
we have required that defective units be both preceded 
and followed by to cells, as shown), or a second to cell 
(probability 1 - ? - p). These configurations are 

Fig. 3. Possible nearest-neighbor sequences parallel to a 3 with their 
probabilities of occurrence. The diatomic defective unit following 
an to cell with probability y may have its internal atom displaced 
either up or down. The internal atom has been omitted from the 
figure. 
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illustrated in the remaining three elements of  Fig. 3. 
Hence there results the relation, regardless of  prefix, 

% =  pa',_, + ~,%_, + ( 1 -  3'-p)%_3. (28) 

Of  course the probabilit ies ep and p are related. Since 
the number  of  t o i l  pairs must  equal the number  offl--co 
pairs we must  have N~ ep = N2 P or 

(3 + 23') 
p = xep (29) 

(1 - x )  

For  the sake of clarity we continue to carry the 
dependent  probabil i ty p. 

o '  m a y  be el iminated between (27) and (28) to give n3 

On~=(1- (~) 0-113__ 1 dl- ( 1 -  3 ' - P ) ( 0 - n , - 3 - 0 - n 3 - 4 )  

+ ep(1 - 3,) 0-,,~-4 + 3'0-,,,-5 - 3,(1 - ep) an,_6. 

(30) 

The above expression m a y  be used as a recursion 
formula  to generate a,3, given the preceding six. It 
remains  to enumerate  0-0 through 0-5. They are 

00-0 = 1 

o01 = p 

00-2 = p(1 - -  ep) + 3' 

00-3 = p(1 -- ep)2 + 1 -- y - - p  (31) 

o0-4 = p(1 -- ep)3 + pep + (1 -- 3'-- P)P 

o0-5 = p(1 -- ep)4 + p(1 -- ep) ep + pepp + 

+ (1 - ~ -  p)[3, + p(1 -ep)] 

+0-0=0 

+0-1=½3,+ 1 - -  3 , -  P 

+0-2 = Pep 

+a 3 = p(1 -- ep) ep + 3, (32) 

+0-4 = p(1 - ep)2 ep + (1 - 3, - p)2 

+ (1 - 3 , -0 ) (½3' )  

+0-5 = p(1 -- ep)3 ep + pep(1 -- 3' -- P) 

+ (1 -- 3'--/9) pep + Pep(½3,) 

_ o 0 = 0  

-0-~ =½3' 

_0-2 = 1 -- 3, - -P  

_0" 3 = pep 

-0-4 = P(1 -- ep) ep + 3, + (1 - ? -  p)(½?) 

_o 5 = p(1 -- ep)2 ep + Pep(½3,) + (1 -- Y - -  p)2. 

(33) 

Equations (31)-(33)  with recursion formula  (30) suffice 

to generate all on. , which, via (9) and (19) generate ~,, ,  
which by (26) giv'es the function Q(hl ,h2,h3) .  

Fig. 4 shows the diffuse intensity distribution 
computed from our model for x = 0.876,  y = 0.24,  r / =  
0.055,  ep = 0.01,  and u = 0.091.  These values were 
chosen to fit the details of  the experimentally observed 
intensity distribution of Fig. 1. The parameter  y 
controls the small  shifts of  the diffuse m a x i m a  from the 
co reciprocal-lattice nodes; t /controls  the lateral widths 
of  the diffuse m a x i m a  (though we used r / =  0.055,  we 
feel that within experimental  error, r/ ___ 0, corre- 
sponding to no lateral correlations and a structureless 
G function), u controls the relative strengths of  the 
diffuse co maxima,  and ep seems to affect the structure 
of  the diffuse m a x i m a  under the sharp b.c.c, funda- 
mental  reflections. We defer discussion of  the value o f x  
used. Contr ibut ions of  all four variants  are included in 
the figure by summing our single-variant result over the 
other three variant  orientations. The calculated inten- 
sity distribution of Fig. 4 is referred to the b.c.c. 
reciprocal-space coordinate system to facilitate its 
compar ison with the measured intensity of  Fig. 1. 

I n t e r v a r l a n t  i n t e r f e r e n c e  e f f e c t s  

The intensity calculation described in this contribution 
is based on a single variant  model:  in effect we have 
removed all of  the crystal volume associated with the 
other three variants  and replaced it with untrans- 
formed material.  If  A I is the diffraction ampli tude 
generated by the model, the calculated intensity 1' 

I = ~m-- 1 A m Am where the sum is shown in Fig. 4 i s  ' 4 , , ,  
over the four variants.  We are here concerned with the 
diffraction consequences of  that approximation,  that is, 
we at tempt to find A1 = 1 - 1' ,  where 1 is the true 
intensity. 

o o 
0.0 1.0 2.0 3.0 4-0 H l = H z 

Fig. 4. Diffuse intensity distribution computed from the single- 
variant model described in the text. Intensities shown are the 
result of  the superposition of  contributions from all four variant 
orientations. The coordinates are those of  Fig. 1. 
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There exists a recent treatment (Borie, 1982a) of this 
effect. It is there shown that the diffuse part of d I  may 
be written 

AID = N ( 1 -  x)2 {m=, ~ "=, ~" (Otm-- 1)(or ' - -  1) 

11}" 
(The symbols x and 1 - x in the reference are 
interchanged relative to their meaning here.) The sums 
over m and n are over the variants. For a particular site 
within variant m, a m = 1 if the transformation has left 
the site undisplaced, exp[ik. Ua3ml if the site is displaced 
+Ua3m parallel to the c axis of the variant, and 
exp[-ik.ua3m] if the transformation has resulted in a 
displacement of-Ua3m. The indicated average is over 
all sites of variant m. The quantity Wm(rj) is the 
probability that after having found the origin in variant 
m, the site at rj from it is in the untransformed region, in 
the sense of the single-variant model used in the 
calculation. 

Consider the variant m = 1 whose c axis is parallel to 
the b.c.c. (111 ) direction in the sense of Figs. 1 and 4. 
This variant accounts for most of the diffuse intensity 
of the figures. If the b.c.c, real- and reciprocal-space 
basis vectors are A" and B', then ua31 --- 
~(A 1 + A s + A3) and k.Uasl = 7ru(H, + H2 + Ha) 
where the continuous variables H n become the b.c.c. 
Miller indices at the fundamental reciprocal-lattice 
nodes. 

For our model, the probability that an atom is 
displaced either up or down within a single variant is 

Hence 

(0~ 1 -- 1 ) =  

2 + 7  

2(3 + 27) 

2 + 7  

2(3 + 27) 
[exp (ik. ua31 ) + exp (--ik. ua31 ) 

-2 ]  

2(2 + Y) 7ru 
sin 2 -  (HI + H2 + Ha). (35) 

(3 + 27) 2 

The extension of this result to the other three variants 
related to b.c.c. (11[>, (1[1) ,  and ( i l l >  is straight- 
forward. 

To find Wz(rj) of (34) from our model we use the 
hexagonal coordinate system as before• The trans- 
lation rj is characterized by nl n2 na as in (1). As before, 
our model treats translations in the hexagonal plane 
related to nl and n2 independently of the component 
associated with n 3. In the sense of Fig. 2, we must 
concede that the origin may be in any of elements 2-8; 

these are the seven ways it may be in an o9 region of our 
single-variant partially transformed model. We write 
the quantity (1 - x)Wz(r,,,n~')2, the probability that 
beginning from an origin on region 2 of Fig. 2(a) 
translation r" n~" terminates in an untransformed 

3 . ? 

region. With tf~e meanings of S, T, U, Pp, and P~ as in 
the preceding section we have 

S 
(1--X) I~z(rn,,,~n)2 = - ~  {PRO'+ P ~ ( S -  1) 6,, 

+ P~ uo,, + ~,~so',_, + l'~SOn,_~ 

+ e;(½)(r-- U-- 3S)(0",_ s + 0",_4)}. (36) 

In the above, 0", (or 0") is the probability that, after 
beginning with an undisplaced atom preceded by an to 
brick (or a fl brick), we translate through n 3 planes 
parallel to a 3 for the relevant variant and find the 
terminal atom both undisplaced and preceded by a fl 
brick - that is, the terminal atom is in an un- 
transformed region. We have written I~ m in (36) to 
indicate that the equation yields its value, provided that 
in the translation n, a, + n 2 a2, exactly p boundaries in 
the sense of (3) have been crossed. 

Expressions similar to (36) may be written for the 
other six possible origin sites of Fig. 2 within an 09 
region. They may be combined with (36) and, with the 
aid of the relation 

(1 - x )  
x0'3 + (3 + 2}') (0,,, + 0.,_, + 0n,_2) 

7(1 - x )  
+ (3 + 27) (0"-3 + 0 " - 4 ) =  x 

[the 0 analog of (4)] and the previously used ex- 
pressions, U/T = x, S /T  = (1 -- x)/(3 + 27), and 
1 - U / T -  3S/T = 27(1 - x)/(3 + 27), the result 
simplified to give 

(1 - x) l/~rm(rn, n2"3) (1), 
= x ( 1 - x ) + x  - { x - - 6 ' } .  (37) 

T--  1 n, 

Clearly the lead term in this simple expression, 
x(1 - x), is the value that must be approached if the 
number of boundaries p crossed in the hexagonal plane 
is large or if n3 is large, in which case 0,, must approach 
x. This expression is analogous to (18). Following the 
treatment leading to (24), we find that 

( 1 -  ~c) - 1 
x 

"1+n2 ( 1 ) P  
- % )  X s; '+"~ 

p=o T--  1 
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and with the aid of (25) 

(1 -- x) Y Z Y exp[ik, r,., m~m~] { Wm(rn, .~.3)/x - 1 } 
1111 ?1'12 n l  3 

= G,n(ht,h2) ~, ( x - -  o'~) <exp[ik.S.3] > 
n3 

x exp[2mn3h3/3]. (38) 

We have included the variant subscript m on the 
function G(hl,h2) since it is dependent on the hex- 
agonal variables and will therefore be orientationally 
different for each variant. In our treatment of inter- 
ference effects among the variants, the sum over n3 in 
(38) plays a role analogous to the function Q(h~,h2,ha) 
of (26). Let 

F,n(hl,h2,h 3) = ~ ( x -  5"3) (exp[ik. 8n3] ) 
/I 3 

x exp[27r/n 3 h3/3]. (39) 

Then clearly the contribution of, say, variant I 
(associated with b.c.c. (111)) to AI D as given by (34) is 

2(2 + y)14 
A i m = N ( l _ x )  3 + 2 ~ J  sin22(HlnU + H2 + H3) 

× {sin 2 ztu -~ (HI + H2-- H3) 

+ sin2 __~u ( H x _  H2 + Ha) 
2 

+ sin2 __Tt'U (--HI +/'/2 + Ha) /01F1 .  (40) 
2 ) 

We find F m. Equations (27) and (28) hold for 5 as 
well as o. Their combination yields a recursion formula 
for 5" 3 analogous to (30): 

d" 3 -- (1 - ~) 5",_ 1 + (1 - y -  p)(0" _ , -  0",_4) 

+ ~a(1 -- y)O" _4 + yO" _5 -- y(1 -- ~a) 0~3_ 6. 

(41) 

It remains to enumerate the first six. With the aid of 
Fig. 3 we find 

0 ~ = 1  

5 1 =  1 - v  

o,' = ( 1 - , )  2 

O~ = (1 -- tp) 3 

5~ = ( 1 -  ~) ~ + ~p 

5~ = (1 -- (o)' + 2(1 -- ~o) ¢pp. (42) 

Equations (41) and (42) may be used to generate any 
0~. They may be used to find the sum of (39) for Fro, 
which may be inserted into (40). The sum of four 

expressions analogous to (40), one for each of the 
variants, yields AZ D. It is displayed in Fig. 5. It is to be 
subtracted from Fig. 4 to give the corrected diffuse 
intensity. 

The integrated intensities of the fundamental Bragg 
maxima 

From our single-variant model, we have found, in 
addition to the diffuse pattern, sharp Bragg maxima at 
the b.c.c, reciprocal-lattice nodes given by I ~ J  -2 [(24)], 
where J - ,  essentially the average structure factor per 
atom caused by the transformation, is given by (5), (6), 
and (8). If we invoke the same tactic to account for the 
variants that was used to generate the diffuse map of 

4 2 • Fig. 4, this becomes I~ Ym= 1~-~. The sum is over the 
variants. ~r- becomes variant dependent since the 
hexagonal variable h3 transforms differently to the 
b.c.c, variables of Figs. 1 and 4 for each of the variants. 
However, as discussed by Boric (1982a) and in the 
preceding section, a correction ,41 must be added to 
obtain the true intensity from the real multivariant 
partially transformed crystal. From equation (5), Bode 
(1982a), the sharp part of AI  is 

/ " ) ,%= I~ (1 - x)  ~ y y ( a ~ -  1) (a~* - 1) - 3 , 
m = l  n = l  

(m ~ n) 

SO that the sharp fundamental maxima are given by 

I~{m~ ~- ~- z ~ =  3 - ~  + ( l - x )  ~ (am--  1) 
1 m = l  n = l  

(m ~ n) 

x (~t* -- 1) -- 3}. (43) 

4.0 

H3 

2.0 
~J 

/ 

0 0  
0-0 1.0 2.0 3.0 4.0 

H, = H 2 

Fig. 5. The diffuse intensity function AI D computed from our 
model. This distribution is to be subtracted from that of Fig. 4 to 
correct it for interference effects among the variants. 
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From (8) and (6) we may write 

~-m = (1 - 2_+aoo ) + 2_+aoo cos 2nuh3m 

= 1 + 2_+aoo(cos 2huh3,,,- 1) 

(1 -- x)(2 + ?) 
= 1 + (cos 2zcuh3~- 1), 

3 + 2 ?  

and from (35) 

(2 + 7) 

(3 + 2?) 
( % -  1 ) -  

Hence (43) becomes 

o r  

(cos 2huh3,,,- 1). 

1~( 2(1 - x)(2 + 7) i-:. 
1 F = 4 + (cos 2huh3, n - 1) 

3 + 2? m=l 

+ (cos 2nuham- 1) 2 
3 + 2 ?  

m = l  
4 4 

= . = 1  (COS 2nuh3m- 1) 
3 + 27 ~m, n) 

x (cos 2nuh3n-  2) - 3} 

2(1 -- x)(2 + ?) 
I F = I~ 1 + ~., (cos 2nuh3m- 1) 

3 + 2 7  
m = l  

+ (cos 2nuh3m - 1) 
3 + 2 ?  

m = l  n = l  

x (cos 2nuh3n-  1)} 

o r  

o r  

( 1  - -  x)(2 + ? (cos 2nuh3m - 1) 
3 + 2 ?  

m = l  

4 4 ( 1 - x ) ( 1  + y) ( l - x ) ( 2  + y) 
IF=/~ x - 3 +  + 

3 + 2? 3 + 2? 

X Z cos 2nuh3m . (44) 
m = l  

Our motive for writing the fundamental intensities in 
the above form is to display the meaning of each term 
in the curly brackets. In our single-variant model the 
volume fraction transformed is (1 - x). Hence, in the 
true crystal, the volume fraction untransformed must 
be 1 - 4(1 - x) = 4x - 3, the first term in the curly 
brackets of (44). None of the atoms in this region are 
displaced. For our model, one-third of the atoms in o) 

bricks and one-half of them in defective units are 
undisplaced. Hence the volume fraction of undisplaced 
atoms in the single-variant model is, from (2), 

1 - -  x 7 ( 1  - -  x )  (1  - -  x ) ( 1  + 7) 
~y + ½ z - - -  + = . 

3 + 27 3 + 27 3 + 27 

In the true crystal the fraction of undisplaced atoms in 
o) regions must be four times this, just the second term 
in the brackets of (44). The fraction of displaced atoms 
for the model must be ~y + ½z or from (2) 

2(1 -- x) ?(1 -- x) (1 -- x)(2 + 7) 
+ 

3 + 27 3 + 2? 3 + 27 

which is the coefficient of the sum in the brackets of 
(44). 

A detailed study of the neutron integrated intensities 
of the fundamental Bragg maxima for a partially 
transformed alloy of Z r - 2 0  wt% Nb, the composition 
of the crystal used for the measurements of Fig. 1, has 
been carried out by Keating & LaPlaca (1974). They 
found that 0.68 of the atoms are undisplaced. Hence 
from (44) 

4(1 - x)(1 + ?) 
4x - 3 + = 0.68 

3 + 2 ?  

or, with ? = 0.24 (the value which reproduced the shifts 
of the diffuse maxima of Fig. 1), 4 x -  3 = 0.504. The 
crystal is about half untransformed. A fraction 0.124 
of its volume is associated with each of the four 
variants of transformed material. Note that x = 0.876, 
the value used for the computation of the diffuse map 
of Fig. 4. Keating & LaPlaca found further that the 
atoms are displaced 56 .2% of the way to the ideal co 
positions. Hence their result gives u = 0 .562/6  = 
0.0937, in excellent agreement with our value of u = 
0.091 chosen to reproduce the relative strengths of the 
diffuse o) maxima. Their measurements clearly indicate 
that near the fundamental maxima the to and fl regions 
scatter coherently. This result reinforces our model of a 
crystal mosaic composed of different but com- 
mensurate bricks. 

D i s c u s s i o n  

Objective criteria for comparing structural models with 
intensity patterns which are partly diffuse are not easy 
to establish. A model quite different from that here 
described has been proposed by Kuan & Sass (1976) to 
explain the diffraction pattern. The model consists of a 
complicated array of atomic relaxations about a 
vacancy. It appears to cause the diffuse maxima shifts 
observed, and it generates diffuse maxima under the 
fundamental reflections, though not of the correct 
relative strengths. Table 1 compares the relative 
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Table 1. Comparison of diffuse to relative intensities 
from models with experiment 

Experiment 
Models 

X-rays Neutrons 
This Kuan & (Lin, Spalt & (Moss, Keating & 

hlh2h 3 work Sass (1976) Batterman, 1976) Axe, 1974) 

i01 0.0 0.18 0.0 0.12 
i03 0.0 0.15 0.0 0.12 
i04 1.0 0.92 1.14 1.05 
001 0.0 0.07 0.0 0.0 
002 0-46 0.65 0.57 0.62 
004 0.21 0.21 0.18 0.0 
102 0.0 0.13 0.0 0.0 
103 1.0 1.0 1.0 1.0 

intensities of the diffuse to maxima from our model and 
that of Kuan & Sass with experiment. It appears that 
the quality of fit with the measurements is about the 
same for the two models. 

However, there are other aspects of the intensity 
calculation from their model which, we feel, cast it in 
doubt relative to the model here proposed. In addition 
to the primary diffuse to maxima discussed above 
which are shifted parallel to h 3 toward the origin, there 
are weaker secondary maxima which are shifted parallel 
to h3 away from the origin. This shift is always greater 
than the inward shift of the primary maxima. In fact 
their Fig. 3 suggests that the center of gravity of this 
satellite pair must be very close to the unshifted to 
reciprocal-lattice nodes. No such artifact appears in our 
calculated map of Fig. 4 nor is it observed in the X-ray 
measurements of Fig. 1 or the neutron measurements 
of Moss, Keating & Axe (1974). The stronger diffuse 
maxima at fundamental positions (those farthest from 
the origin) also exhibit satellites in their intensity map. 
These are not observed, nor are they apparent in Fig. 4. 
It is our impression that the degree of eUipticity of the to 
diffuse reflections is exaggerated in their map, relative 
to the measurements and to our Fig. 4. 

Kuan & Sass (1976) have assumed that the defect 
configurations in the to regions scatter incoherently 
relative to each other; that is, the intensity is that from 
one defect configuration times the total number of 
defects. We feel that this is questionable. Even if the 
defects are randomly distributed relative to each other, 
each must be centered on a site of the periodic fl 
arrangement; there must be nonrandom phase 
relations. How important this may be is open to 
question. 

Georgopoulos & Cohen (1981) comment that an 
implausibly high vacancy concentration (about 1%) 
must be postulated to justify the Kuan-Sass model. 
Kuan & Sass make no attempt to generate the 
intensities of the sharp fundamental maxima to com- 
pare with the measurements of Keating & LaPlaca 
(1974). 

Horovitz, Murray & Krumhansl (1978) propose a 
soliton model for the to phase to account for both its 

diffraction pattern and its other properties. The 
resultant defect configuration is different from our 
diatomic defect brick, but shares with it the property 
that subvariant 091 be followed by o93 (in the sense of 
part II) and should therefore produce the same diffuse 
maxima shifts generated by the models of part II and 
this contribution. Their qualitative one-dimensional 
intensity calculation (along 00ha) shows the o9 001 
shifted outward (it is absent in Figs. 1 and 4) and the 
002 shifted inward as observed, with a high-angle tail 
(note that to 002 in Fig. 4 also is asymmetric in this 
sense). They argue that the internal structure of the 
defect is not important, that its primary diffraction 
consequence is that it generate the subvariant sequence 
tol -'* 0")3 "-~ 0")2" 

We have found that to reproduce quantitatively the 
observed diffuse maxima shifts, very high fault densities 
(7 = 0.24) are necessary in the to regions. If one-fourth 
of the to cells are followed by defect configurations, 
then it seems to us that the details of the intensity 
pattern must indeed be sensitive to the internal atomic 
arrangement within a defect. It also seems likely that 
with such high fault densities whatever such arrange- 
ment is assumed should affect the quality of agreement 
of the parameter u derived from the diffuse intensities 
with its value determined from the integrated intensities 
of the fundamental maxima. As we have pointed out, 
our model results in excellent agreement with the 
integrated intensity measurements of Keating & La- 
Placa (1974). Final resolution of this question must 
await more detailed calculations with the soliton model. 

We have avoided any consideration of what part of 
the diffuse intensity may be elastic, an issue which has 
infected the to-phase diffraction literature in the recent 
past. Our grounds for that is the finding of Andersen & 
Batterman (1978) that the diffuse scattering is elastic to 
3 neV. They recommend that og-phase models be based 
on static atomic displacements, as is our model 
described here. 

Lin, Spalt & Batterman (1976) derive from their 
measurements the parameter u as a function of alloy 
composition (their value for the 20 wt% Nb alloy 
differs from ours and that of Keating & LaPlaca by 
about 10%). They find that it decreases linearly with 
composition to about 20 wt% and then becomes nearly 
constant. They speculate that this result suggests two 
regimes of to structures, with a boundary somewhere 
between 15 and 20 wt% Nb. Horovitz, Murray & 
Krumhansl (1978) also propose the existence of such a 
boundary. To cause our model to reproduce the lateral 
widths of the to diffuse peaks of Fig. 1, we have had to 
choose r/ ~ 0. As discussed in Appendix C, part I, 
r /=  0 implies G(hl,h2) = 1. A structureless G function 
[(25)] means that the lateral widths of these maxima 
are determined entirely by Q(hl,h2,ha) [(26)]. It further 
means that within the hexagonal plane there are no 
correlations. Clearly for the 8, 12, and 15 wt% Nb 
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diffuse intensity maps of Lin et al., an r/significantly 
different from zero is necessary to generate such 
narrow diffuse peaks. We suggest that among the 
characteristics of the two m-phase regimes proposed by 
Lin et al. is the disappearance of correlations within the 
hexagonal plane between 15 and 20 wt% Nb. Their 
map at 30 wt% Nb offers interesting reinforcement for 
this proposal. Though the intensity is weaker and more 
extended parallel to h 3, the lateral widths of the maxima 
are about the same as the 20 wt% map, suggesting 
saturation at r /= 0 for both maps. 

From the widths of the diffuse maxima parallel to h a , 
Lin et al. estimate 'particle sizes' for coherently 
diffracting o9 domains. We feel that such estimates are 
nonphysical, that the broadening is more nearly like 
that related to stacking faults. Of course broadening 
accompanied by peak shifts suggests such a likelihood. 
There exists a recent simplified treatment of I(00h3) 
for the o9 phase (Borie, 1982b) cast completely within 
the conventional formalism of stacking-fault theory. 

An important result of the calculation described here 
is the generation of diffuse maxima under the funda- 
mental Bragg reflections. We stress that they are due to 
the coherent interaction of defective co regions with fl 
regions. Their absence in the calculation of part II (the 
model included no untransformed material) reinforces 
this conclusion. That the intervariant interference 
correction AI  o shown for our model in Fig. 5 is 
negative at the fundamentals requires that the single- 
variant partially transformed model generate diffuse 
intensity at these positions. That the correction is 
substantial only near these positions is to be expected: 
These are the only regions in reciprocal space where the 
o9 regions and the untransformed fl regions simul- 
taneously contribute to the diffraction amplitude. The 
application of the correction of Fig. 5 to the map of 
Fig. 4 results in an intensity distribution generated by 
all of the o9 variants and the untransformed matrix. We 
have not carried out this correction because the relative 
strengths of the fundamental diffuse maxima of Fig. 4 
are clearly not right. Our model has caused them to 
increase with distance from the origin while both the 
X-ray and neutron measurements show them all to be 
of about equal strength. We suspect that the reason for 
this failure is that the model has not correctly dispersed 
the o9 material in the untransformed matrix. However, 
we believe that we have correctly identified the origin of 
the fundamental diffuse intensity for the first time. 
Should this be so, and should ways be found to modify 
the size and distribution of the co regions in the matrix 
of our model to fit observation (or in some way to 

transform the measurements, yielding experimental 
values of parameters which specify the dispersion of co 
in fl), an important and new kind of information from 
intensity patterns would result. 

Conclus ion 

In part I of this series of contributions we showed that a 
simple dispersion of 09 material in a fl matrix cannot 
reproduce observation; that the subvariant sequence 
o91 -" 092 -" 093 results in diffuse co maxima shifted 
contrary to experiment. In part II we showed that by 
introducing a defect in the 09 regions causing the 
sequence co I " ~  ( / ) 3  "-~ 0")2' the observed shifts and general 
shape of the o9 maxima result. This part of the intensity 
pattern is a matter of interference effects internal to 
defective co regions. In this contribution we have 
considered the consequences of a dispersion of such 09 
regions in untransformed material. A comparison of 
our model not only with the observed diffuse intensity 
but also with the sharp fundamentals reinforces, we 
feel, the validity of the internal structure our model has 
assigned to the defects, though we suspect that this 
issue is not yet finally settled. Our calculation has 
resulted in a plausible qualitative explanation of the 
fundamental diffuse maxima and for the first time we 
have taken account of interference effects among the 
variants. We expect this work to be a basis for useful 
new departures in efforts to arrive at insights into the 
short-range structure of the diffuse 09 phase. 
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